Section 5: The Visual System Cont.

Lexi Franklin

Announcements

- Midterm grades are posted!
 - If you want to see your test, you have to visit the TAs during office hours
- Homework 2 will be passed out next week

5 Layers in the Retina

Types of Bipolar Cells

Types of Bipolar Cells

• ON Bipolar

- In the light: depolarization
- In the dark: hyperpolarization

• OFF Bipolar

- In the light: hyperpolarization
- In the dark: depolarization

NOTE:

- Depolarization: cell is on
- Hyperpolarization: cell is off

Intro to Receptive Fields

- Definition
 - Region of sensory space where a stimulus will trigger the firing of a neuron
- On the Body
 - Receptive field on the skin -> sensory axon fires to spinal cord -> info conveyed to the brain
- On the Eye
 - Area of the retina where light changes the neuron's firing rate
 - Either projected into the visual field or on the retina

Receptors are Turned Off by Light

Receptive Fields of Bipolar Cells: Direct Pathway

Receptive Fields of Bipolar Cells: Direct Pathway

• Light on the Center:

- Photoreceptor hyperpolarized (off)
- So ON bipolar cell is depolarized (on)
- Light on the Surround
 - Center receptors is depolarized (on) so ON bipolar cell is hyperpolarized (off)
- Results in Center-Surround Receptive Fields

Inhibitory Lateral Connections

- Horizontal Cells
 - Receive input from photoreceptors
 - Project to other photoreceptors and bipolar cells
- Amacrine Cells
 - Receive input from bipolar cells
 - Project to ganglion and bipolar cells

Receptive Fields of Bipolar Cells: Lateral Inhibition

Convergence and Features of Rods & Cones

• Cones

- Low convergence,1:1
- High acuity
- Information about details is preserved
- Rods
 - High convergence
 - Many:1
 - High sensitivity to light
 - Details can be lost

Cones show LOW convergence

Cones 1:1 or Few:1

(Cones per Ganglion, on average across retina, **6:1**)

Rods show HIGH convergence

Rods Many:1

(Rods per Ganglion, on average across retina, **120:1**)

The Beginnings of the Visual Pathway

